The Activation of CO by B$_2$(NHCR)$_2$: HOMO-LUMO Swap Without Photoinduction

Huaiyu Zhanga, Zexing Caob, Wei Wub, Yirong Mob,c,*

a, Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, China

b, Department of Chemistry, Xiamen University, Xiamen, China.

c, Department of Chemistry, Western Michigan University, Michigan, USA.

* Yirong.mo@wmich.edu

Abstract

Recently, Braunschweig et al. found that diboryne (B≡B) stabilized by N-heterocyclic carbenes (B$_2$(NHCR)$_2$) can bind and activate CO molecules to forge C−C bonds. Here we theoretically explored the bonding nature of B$_2$(NHCR)$_2$ and its activation mechanism for CO using the block-localized wavefunction (BLW) method which is a variant of ab initio valence bond (VB) theory. We first confirmed that the third excited state ($^1\Sigma^+_g$) of a triple bond of B$_2$ is preferred to bind two NHCR molecules due to strong electrostatic attraction and charge transfer from NHCR to B$_2$. Then, we showed that the strong steric repulsion between the HOMO of CO and one of the two degenerate π orbitals (also HOMOs) of B$_2$(NHCR)$_2$ leads to the HOMO-LUMO swap in the latter. As a consequence, both HOMO and HOMO-1 of B$_2$(NHCR)$_2$ can effectively interact with the two π* antibonding orbitals (LUMO and LUMO+1) of CO, resulting in the substantial activation of CO.

Reference and notes